S1 S2 Rbd Spike Protein

Rabbit monoclonal Anti-MERS Spike protein (S1/RBD/MERS-RBD) IgG (Neutralizing)

MERS122-M 100 ul
EUR 781.2

Human IgG antibody Laboratories manufactures the s1 s2 rbd spike protein reagents distributed by Genprice. The S1 S2 Rbd Spike Protein reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. To purchase these products, for the MSDS, Data Sheet, protocol, storage conditions/temperature or for the concentration, please contact Spike RBD. Other S1 products are available in stock. Specificity: S1 Category: S2 Group: Rbd Spike

SARS-CoV-2 (COVID-19) Spike RBD Antibody

0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike RBD Antibody

0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

anti-SARS-CoV-2 spike RBD VHH antibody

each Ask for price

SARS-CoV-2 Spike S2 Peptide

0.05 mg
EUR 235.5
Description: (IN) SARS-CoV-2 Spike peptide

SARS-CoV-2 Spike S2 Peptide

0.05 mg
EUR 235.5
Description: (CT) SARS-CoV-2 Spike peptide

Rabbit Anti-MERS-CoV Spike protein S2 (726-1296 a.a) IgG, aff pure

100 ul
EUR 578.4

Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant

10 µg
EUR 187.2

Rbd Spike information

Spike S1 RBD (G476S), Avi-His-tag (SARS-CoV-2)

100868 100 µg
EUR 320
Description: SARS-CoV-2 Spike S1 receptor binding domain (RBD), also known as SARS-CoV-2 Spike 1 RBD, novel coronavirus Spike 1 RBD and nCoV Spike 1 RBD, GenBank Accession No. QHD43416.1, a.a. 319-541 with G476S mutation and with a C-terminal Avi-His-tag, expressed in a HEK293 cell expression system. MW= 28 kDa. This protein runs at a higher M.W. by SDS-PAGE due to glycosylation.

Spike S1 RBD, Fc-Fusion, Avi-Tag (SARS-CoV-2)

100698-1 100 µg
EUR 320
Description: SARS-CoV-2 Spike protein S1 subunit, receptor binding domain (RBD), also known as SARS-CoV-2 spike RBD, novel coronavirus spike RBD and nCoV spike RBD, GenBank Accession No. MN_908947.1, a.a. 319-541, fused at the C-terminus of the Fc portion of human IgG1, with a C-terminal Avi-tag™, expressed in a HEK293 cell expression system. MW=54 kDa. This protein runs at a higher MW by SDS-PAGE due to glycosylation.

Spike S1 RBD, Fc-Fusion, Avi-Tag (SARS-CoV-2)

100698-2 1 mg
EUR 2500
Description: SARS-CoV-2 Spike protein S1 subunit, receptor binding domain (RBD), also known as SARS-CoV-2 spike RBD, novel coronavirus spike RBD and nCoV spike RBD, GenBank Accession No. MN_908947.1, a.a. 319-541, fused at the C-terminus of the Fc portion of human IgG1, with a C-terminal Avi-tag™, expressed in a HEK293 cell expression system. MW=54 kDa. This protein runs at a higher MW by SDS-PAGE due to glycosylation.

Spike S1 RBD (V367F), Avi-His-tag (SARS-CoV-2)

100769-1 100 µg
EUR 320
Description: SARS-CoV-2 Spike S1 receptor binding domain (RBD), also known as SARS-CoV-2 Spike 1 RBD, novel coronavirus Spike 1 RBD and nCoV Spike 1 RBD, GenBank Accession No. QHD43416.1, a.a. 319-541 with a V367F mutation and a with C-terminal Avi-His-tag, expressed in a HEK293 cell expression system. MW= 28 kDa. This protein runs at a higher M.W. by SDS-PAGE due to glycosylation.

Spike S1 RBD (V367F), Avi-His-tag (SARS-CoV-2)

100769-2 1 mg
EUR 2500
Description: SARS-CoV-2 Spike S1 receptor binding domain (RBD), also known as SARS-CoV-2 Spike 1 RBD, novel coronavirus Spike 1 RBD and nCoV Spike 1 RBD, GenBank Accession No. QHD43416.1, a.a. 319-541 with a V367F mutation and a with C-terminal Avi-His-tag, expressed in a HEK293 cell expression system. MW= 28 kDa. This protein runs at a higher M.W. by SDS-PAGE due to glycosylation.

SARS-CoV-2 (COVID-19) Beta Variant (B.1.351, SA) Spike S1 (RBD) Recombinant Protein

21-809 50 ug
EUR 619.8
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a new variant of SARS-CoV-2, called B.1.351, was detected in South Africa. This variant carries three mutations in the RBD at the positions 417, 484 and 501 (K417N, E484K, N501Y) and is associated with a higher viral load, which may suggest potential for increased transmissibility.

SARS-CoV-2 (COVID-19) Beta Variant (B.1.351, SA) Spike S1 (RBD) Recombinant Protein

21-812 50 ug
EUR 537.9
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a new variant of SARS-CoV-2, called B.1.351, was detected in South Africa. This variant carries three mutations in the RBD at the positions 417, 484 and 501 (K417N, E484K, N501Y) and is associated with a higher viral load, which may suggest potential for increased transmissibility.The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) (B.1.351 Variant, SA) can be used as antigen in Serological ELISA Kits to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma.

SARS-CoV-2 Spike RBD protein antibody pair 1

CSB-EAP33245 1 pair
EUR 900
Description: This is a set of capture antibody and HRP-conjugated antbody for quantitative detection of SARS-CoV-2 Spike RBD protein for through solid phase sandwich ELISA.

Human CellExp™ SARS-CoV-2 Spike Protein (RBD 310-568), Recombinant

P1543-10 10 µg
EUR 187.2

Human CellExp™ SARS-CoV-2 Spike Protein (RBD 310-568), Recombinant

P1543-50 50 µg
EUR 576

Human CellExp™ SARS-CoV-2 Spike Protein (RBD; 331-524), Recombinant

P1544-10 10 µg
EUR 187.2

Human CellExp™ SARS-CoV-2 Spike Protein (RBD; 331-524), Recombinant

P1544-50 50 µg
EUR 576

SARS-CoV-2 (COVID-19) Alpha Variant (B.1.1.7, UK) Spike S1 (RBD) Recombinant Protein

21-808 50 ug
EUR 619.8
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a more transmissible variant of SARS-CoV-2, called B.1.1.7, was detected in the south of England. This variant carries a mutation in the RBD at the position 501 (N501Y).

SARS-CoV-2 (COVID-19) Alpha Variant (B.1.1.7, UK) Spike S1 (RBD) Recombinant Protein

21-811 50 ug
EUR 537.9
Description: SARS-CoV-2 shares 79.5% sequence identity with SARS-CoV and is 96.2% identical at the genome level to the bat coronavirus BatCoV RaTG133, suggesting it had originated in bats. The coronaviral genome encodes four major structural proteins: the Spike (S) protein, Nucleocapsid (N) protein, Membrane/Matrix (M) protein and the Envelope (E) protein. The SARS Envelope (E) protein contains a short palindromic transmembrane helical hairpin that seems to deform lipid bilayers, which may explain its role in viral budding and virion envelope morphogenesis. The SARS Membrane/Matrix (M) protein is one of the major structural viral proteins. It is an integral membrane protein involved in the budding of the viral particles and interacts with SARS Spike (S) protein and the Nucleocapsid (N) protein. The N protein contains two domains, both of them bind the virus RNA genome via different mechanisms.The CoV Spike (S) protein assembles as trimer and plays the most important role in viral attachment, fusion and entry. It is composed of a short intracellular tail, a transmembrane anchor and a large ectodomain that consists of a receptor binding S1 subunit (RBD domain) and a membrane-fusing S2 subunit. The S1 subunit contains a receptor binding domain (RBD), which binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) present at the surface of epithelial cells. Recently, a more transmissible variant of SARS-CoV-2, called B.1.1.7, was detected in the south of England. This variant carries a mutation in the RBD at the position 501 (N501Y).The SARS-CoV-2 Spike Protein S1 (RBD) (rec.) (His) (B.1.1.7 Variant, UK) can be used as antigen in Serological ELISA Kits to detect anti-SARS-CoV-2 Spike (RBD) antibodies in serum or plasma.

Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant

P1530-10 10 µg
EUR 187.2

Human CellExp™ SARS-CoV-2 Spike Protein (RBD), Recombinant

P1530-50 50 µg
EUR 709.2

Spike S1 RBD (B.1.617 Variant), Avi-His-Tag (SARS-CoV-2)

101156-1 100 µg
EUR 320
Description: Recombinant SARS-CoV-2 Spike protein, RBD (Receptor Binding Domain) encompassing amino acids 319-541. This protein corresponds to SARS-CoV-2 Variant B.1.617 originally identified in India, and contains mutations L452R and E484K. The construct contains a C-terminal Avi-Tag™ followed by a His-tag (6xHis). The protein was affinity purified. HiP™ indicates a high purity protein (≥90% pure) and less than 10% aggregation as measured by gel filtration.